Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice Any revealing of identification,

Fifth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Information Theory and Coding

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. A source emits one of the four probable messages m_1 , m_2 , m_3 and m_4 with probabilities 3/11, 2/11, 2/11 and 4/11 respectively. Find the entropy of the source and show that for the second order extension of the source $H(S^2) = 2$ H(S) by listing the symbols of second extended source along with their probabilities. (10 Marks)
 - b. A certain data source has 8 symbols that are produced in blocks of four at a rate of 500 blocks/sec. The first symbol in each block is always the same for synchronization. The remaining three symbols are filled by any of the 8 symbols with equal probability. Find entropy rate of this source.

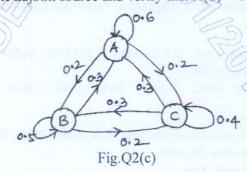
 (06 Marks)
 - c. Explain the block diagram of an information system.

(04 Marks)

2 a. Explain the steps in the Shannon's encoding algorithm for generating binary code.

(04 Marks)

b. Show that H(X, Y) = H(Y) + H(X/Y).


(04 Marks)

c. The state diagram of the mark off source is as shown in the Fig.Q2(c).

i) Find the stationary distribution

- ii) Find the entropy of each state and hence the entropy of the source
- iii) Find the entropy of the adjoint source and verify that H(S) < H(S).

(12 Marks)

- a. A discrete memoryless source has an alphabet of seven symbols with probabilities for its output as S = {S₁, S₂, S₃, S₄, S₅, S₆, S₇); P = {0.25, 0.25, 0.125, 0.125, 0.125, 0.0625, 0.0625}; x = {0, 1}, compute the Huffman code for this source, moving the composite symbol as high as possible. Explain why the computed source code has an efficiency of 100%.
 - b. Prove that the mutual information of the channel is symmetric.

(04 Marks)

c. Define priori entropy, posteriori entropy, equivocation and mutual information. (6)

4 a Two noisy channels are cascaded whose channel matrices are given by:

$$P(Y/X) = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{3}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{bmatrix} P(Z/Y) = \begin{bmatrix} 0 & \frac{3}{5} & \frac{2}{5} \\ \frac{1}{3} & \frac{2}{3} & 0 \end{bmatrix}$$

With $P(x_1) = P(x_2) = \frac{1}{2}$. Find the overall mutual information I(X,Z) and show that I(X,Y) > I(X,Z). (12 Marks)

- b. Alphanumeric data are entered into a computer from a remote terminal through a voice grade telephone channel. The channel has a bandwidth of 3.2KHz and output signal to noise ratio of 20dB. The terminal has a total of 256 symbols. Assume that the symbols are equiprobable and the successive transmissions are statistically independent.
 - i) Calculate channel capacity
 - ii) Find the average information content per character
 - iii) Calculate the maximum symbol rate for which error free transmission over the channel is possible. (08 Marks)

PART - B

- 5 a. Design a systematic (4, 2) linear block code:
 - i) Find the generator matrix [G] and parity check matrix [H]
 - ii) Find all possible code vectors
 - iii) Write the standard array
 - iv) What are the error detecting and correcting capabilities of the code?
 - v) Draw the encoding circuit
 - vi) Draw the syndrome calculating circuit.

(14 Marks)

b. Draw the general encoding circuit for (n, k) linear block code and explain its operation.

(06 Marks)

- 6 a. Consider (15, 5) cyclic code generated by polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^8 + x^{10}$.
 - i) Draw the block diagram of an encoder and syndrome calculator for this code
 - ii) Find the code polynomial for the message polynomial $D(x) = 1 + x^2 + x^4$ in systematic form.
 - iii) Is $V(x) = 1 + x^4 + x^6 + x^8 + x^{14}$ a code polynomial? (12 Marks)
 - b. Draw the general block diagram of syndrome calculation circuit for cyclic codes and explain its operation. (08 Marks)
- 7 a. Write short notes on: i) RS codes ii) Golay codes iii) Shortened cyclic codes iv) Burst error correcting codes. (15 Marks)
 - b. Define cyclic code. Explain how cyclic codes are generated from the generating polynomials. (05 Marks)
- 8 a. Consider the convolution encoder is as shown in the Fig. Q8(a).
 - i) Draw the state diagram
 - ii) Draw the code tree
 - iii) Find the encoder output produced by the message sequence 10111
 - iv) Verify the output using time domain approach (matrix method).

(14 Marks)

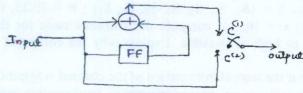


Fig.Q8(a)

b. Explain encoding of convolution codes using time domain approach with an example.

(06 Marks)